
Space Systems Engineering Lessons LearnedSpace Systems Engineering Lessons LearnedSpace Systems Engineering Lessons LearnedSpace Systems Engineering Lessons Learned

TOR-2001(8504)-1176 09/28/01 Lesson No. 018

5

Make Sure Critical Software Performs in its Intended Environment

The Problem:

The 1996 maiden flight of a launch vehicle ended in a crash because a software error
disabled the inertial reference system.

The Cause:
The launcher’s flight control system, which
had derived considerable heritage from the
previous generation, used two identical
inertial reference controllers, including a
“hot” stand-by.

One function inherited from the legacy soft-
ware computed the platform alignment
before launch. This function was no longer
needed in the new generation.

The new rocket flew a different trajectory,
creating an alignment bias that was too large
for the legacy code to compute. An “operand
error exception” occurred as a result.

Such errors are common, and are typically handled by software (for example, by inserting
“likely” values). Unfortunately, although the programmers did identify the alignment bias
input as one of the several variables capable of causing operand errors, they chose to leave
it unprotected, probably supposing that there would be large safety margins.

More tragically, the system was designed in the belief that any fault would be due to
random hardware problems, and should be handled by an equipment swap. Thus, when the
software detected the errant and irrelevant exception, it halted the active controller and
switched to the backup. Of course, the backup immediately encountered the same error
exception, and also shut down. The launch vehicle in essence destroyed itself even though
both controllers worked perfectly.

Lessons Learned:
• Hardware redundancy does not necessarily protect against software faults.
• Mission-critical software failures should be included in system reliability and fault

analysis.
• Software specifications should always include specific operational scenarios.
• Software reuse should be thoroughly analyzed to ensure suitability in a new environ-

ment, and all associated documentation, especially assumptions, should be reexamined.
• Extensive testing should be performed at every level, from unit through system test,

using realistic operational and exception scenarios.

For more technical information, call Suellen Eslinger at (310) 336-2906.
For comments on the Aerospace Lessons Learned Program, including background specifics,
call Paul Cheng at (310) 336-8222.

As software takes over many functions that
used to be controlled by hardware, code sizes
increase almost exponentially. Software reli-
ability thus poses a growing challenge and
warrants more quality assurance efforts.

0

20000

40000

60000

80000

100000

1965 1975 1985 1995 2005

SBIRS-High

Milstar

UHF F/O
DSP

DSP
Phase 1

Flight Software Sizes of Major Programs

0

20000

40000

60000

80000

100000

1965 1975 1985 1995 2005

SBIRS-High

Milstar

UHF F/O
DSP

DSP
Phase 1

Flight Software Sizes of Major Programs

	Make Sure Critical Software Performs in its Intended Environment

